

Submission No. 0410 – presentation:

Innovative approach to the design of stilling basin: improvement of fish migration and scour utilization for energy dissipation

<u>M. Zukal</u>, P. Fošumpaur, T. Kašpar & M. Králík zukal@fsv.cvut.cz

Czech Technical University in Prague Faculty of Civil Engineering Department of Hydraulic Structures

Map of the Czech Republic

Our paper presents an original technical solution which was designed for the currently prepared project Dry Retention Reservoir Mělčany (Czech Republic).

Current environmental requirements for newly built in-stream hydraulic structures also require ensuring their migration permeability.

Motivation for the project:

Floods at the Dědina stream water basin in 1997,1998, 2011

Proposed solution:

Dry Retention Reservoir Mělčany (2020 - Project stage)

19-meter-high earthfill dam; storage capacity ca 3.2 mil m³; migration pass 6,6 x 1,5m; 2 bottom outlets

Layout of the combined structure (up) and section of the dam (down). Visualization of the filled stilling basin and combined structure.

River Flow

Proposed solution:

Great attention was paid to the design of the stilling basin

Definition sketch for scour downstream in-stream hydraulic structures

River Flow 2020

Different point of view to the purpose/function of the stilling basin

	Stilling basin	
Place for:	A: dissipation the energy of water flowing over the spillway	B: migration of animals
	Proposed solution:	
design the "standa	rd" concrete stilling basin (with <u>dept</u>	<u>h of several mete</u>

To design the "standard" concrete stilling basin (with <u>depth of several meters</u>). Fill the space with riprap (reducing the energy of water by scour in "standard" stilling basin) and create a migration pass (<u>depth only decimeters</u>) for water-dependent animals in it.

What should be the parameters (depth of the concrete stilling basin, fraction of riprap filling) for secure design?

Scour depth

Several empirical equations to predict the scour depth

As the spread of results is too great and the calculation cannot take account of the asymmetrical arrangement, it was necessary to **verify** the functionality of the **proposed solution on a physical hydraulic model**.

Spread of the depths of scour based on calculations for the Mělčany Structure and $q = 9.9 \text{ m}^2 \text{.s}^{-1}$.

Hydraulic model research

Geometric scale of 1:20, Froude's law of mech.similitude

Hydraulic model research

Some pictures from the laboratory experiments

Hydraulic model research

Situation before the experiments (left) and after the experiments with $Q_{10\,000}$ (right).

- 1. The research on the combined structure of the Mělčany dam was aimed at verifying the functioning of an innovative design of a stilling basin that is filled with riprap (fraction 200-500kg) in normal discharge situations, and in the upper part riprap will be overlaid with gravel.
- 2. Scour was verified for the passage of Q_{100} up to Q_{10000} floods.
- 3. It was possible to observe a **decrease in velocities** there after a scour hole formed by up to approximately **20%** compared to the velocities measured at the beginning of the experiment.
- 4. The measurements were used to assess correspondence with computational methods according to the individual authors. The **best correspondence** was reached based on the calculation according to **Veronese** (1937) and Novak (1955).
- 5. The **prepared design** of the combined structure also ensures the migration permeability of the hydraulic structure and **provides suitable conditions from an environmental point** of view.

Thank you very much for your attention!

<u>M. Zukal</u>, P. Fošumpaur, T. Kašpar & M. Králík zukal@fsv.cvut.cz

http://hydrotechnika.fsv.cvut.cz/rf2020-0410

Czech Technical University in Prague Faculty of Civil Engineering Department of Hydraulic Structures

Do not hesitate to contact us, for example at ResearchGate - we are **ready** for your questions! ©